Using Artificial Intelligence Models in System Identification
نویسنده
چکیده
Artificial Intelligence (AI) techniques are known for its ability in tackling problems found to be unyielding to traditional mathematical methods. A recent addition to these techniques are the Computational Intelligence (CI) techniques which, in most cases, are nature or biologically inspired techniques. Different CI techniques found their way to many control engineering applications, including system identification, and the results obtained by many researchers were encouraging. However, most control engineers and researchers used the basic CI models as is or slightly modified them to match their needs. Henceforth, the merits of one model over the other was not clear, and full potential of these models was not exploited. In this research, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods, which are different CI techniques, are modified to best suit the multimodal problem of system identification. In the first case of GA, an extension to the basic algorithm, which is inspired from nature as well, was deployed by introducing redundant genetic material. This extension, which come in handy in living organisms, did not result in significant performance improvement to the basic algorithm. In the second case, the Clubs-based PSO (C-PSO) dynamic neighborhood structure was introduced to replace the basic static structure used in canonical PSO algorithms. This modification of the neighborhood structure resulted in significant performance of the algorithm regarding convergence speed, and equipped it with a tool to handle multimodal problems. To understand the suitability of different GA and PSO techniques in the problem of system identification, they were used in an induction motor’s parameter identification problem. The results enforced previous conclusions and showed the superiority of PSO in general over the GA in such a multimodal problem. In addition, the CPSO topology used significantly outperformed the two other static topologies in all performance measures used in this problem.
منابع مشابه
بررسی کارایی روشهای مختلف هوش مصنوعی و روش آماری در برآورد میزان رواناب (مطالعه موردی: حوزه شهید نوری کاخک گناباد)
Rainfall-runoff models are used in the field of hydrology and runoff estimation for many years, but despite existing numerous models, the regular release of new models shows that there is still not a model that can provide sophisticated estimations with high accuracy and performance. In order to achieve the best results, modeling and identification of factors affecting the output of the model i...
متن کاملPrediction of Bubble Point Pressure & Asphaltene Onset Pressure During CO2 Injection Using ANN & ANFIS Models
Although CO2 injection is one of the most common methods in enhanced oil recovery, it could alter fluid properties of oil and cause some problems such as asphaltene precipitation. The maximum amount of asphaltene precipitation occurs near the fluid pressure and concentration saturation. According to the description of asphaltene deposition onset, the bubble point pressure has a very special imp...
متن کاملIdentification of Cement Rotary Kiln in Noisy Condition using Takagi-Sugeno Neuro-fuzzy System
Cement rotary kiln is the main part of cement production process that have always attracted many researchers’ attention. But this complex nonlinear system has not been modeled efficiently which can make an appropriate performance specially in noisy condition. In this paper Takagi-Sugeno neuro-fuzzy system (TSNFS) is used for identification of cement rotary kiln, and gradient descent (GD) algori...
متن کاملPrediction of Seismic Wave Intensity Generated by Bench Blasting Using Intelligence Committee Machines
In large open pit mines prediction of Peak Particle Velocity (PPV) provides useful information for safe blasting. At Sungun Copper Mine (SCM), some unstable rock slopes facing to valuable industrial facilities are both expose to high intensity daily blasting vibrations, threatening their safty. So, controlling PPV by developing accurate predictors is essential. Hence, this study proposes improv...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملApplication of artificial intelligence methods for estimation of maximum surface settlement caused by EPB shield tunneling
Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1302.7096 شماره
صفحات -
تاریخ انتشار 2007